Математическая модель - meaning and definition. What is Математическая модель
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is Математическая модель - definition


Математическая модель         

приближённое описание какого-либо класса явлений внешнего мира, выраженное с помощью математической символики. М. м. - мощный метод познания внешнего мира, а также прогнозирования и управления. Анализ М. м. позволяет проникнуть в сущность изучаемых явлений. Процесс математического моделирования (См. Моделирование), то есть изучения явления с помощью М. м., можно подразделить на 4 этапа.

Первый этап - формулирование законов, связывающих основные объекты модели. Этот этап требует широкого знания фактов, относящихся к изучаемым явлениям, и глубокого проникновения в их взаимосвязи. Эта стадия завершается записью в математических терминах сформулированных качеств, представлений о связях между объектами модели.

Второй этап - исследование математических задач, к которым приводят М. м. Основным вопросом здесь является решение прямой задачи, то есть получение в результате анализа модели выходных данных (теоретических следствий) для дальнейшего их сопоставления с результатами наблюдений изучаемых явлений. На этом этапе важную роль приобретают математический аппарат, необходимый для анализа М. м., и вычислительная техника - мощное средство для получения количеств, выходной информации как результата решения сложных математических задач. Часто математические задачи, возникающие на основе М. м. различных явлений, бывают одинаковыми (например, основная задача линейного программирования (См. Линейное программирование) отражает ситуации различной природы). Это даёт основание рассматривать такие типичные математические задачи как самостоятельный объект, абстрагируясь от изучаемых явлений.

Третий этап - выяснение того, удовлетворяет ли принятая гипотетическая модель критерию практики, то есть выяснение вопроса о том, согласуются ли результаты наблюдений с теоретическими следствиями модели в пределах точности наблюдений. Если модель была вполне определена - все параметры её были заданы, - то определение уклонений теоретических следствий от наблюдений даёт решения прямой задачи с последующей оценкой уклонений. Если уклонения выходят за пределы точности наблюдений, то модель не может быть принята. Часто при построении модели некоторые её характеристики остаются не определёнными. Задачи, в которых определяются характеристики модели (параметрические, функциональные) таким образом, чтобы выходная информация была сопоставима в пределах точности наблюдений с результатами наблюдений изучаемых явлений, называются обратными задачами. Если М. м. такова, что ни при каком выборе характеристик этим условиям нельзя удовлетворить, то модель непригодна для исследования рассматриваемых явлений. Применение критерия практики к оценке М. м. позволяет делать вывод о правильности положений, лежащих в основе подлежащей изучению (гипотетической) модели. Этот метод является единственным методом изучения недоступных нам непосредственно явлений макро- и микромира.

Четвёртый этап - последующий анализ модели в связи с накоплением данных об изучаемых явлениях и модернизация модели. В процессе развития науки и техники данные об изучаемых явлениях всё более и более уточняются и наступает момент, когда выводы, получаемые на основании существующей М. м., не соответствуют нашим знаниям о явлении. Т. о., возникает необходимость построения новой, более совершенной М. м.

Типичным примером, иллюстрирующим характерные этапы в построении М. м., является модель Солнечной системы. Наблюдения звёздного неба начались в глубокой древности. Первичный анализ этих наблюдений позволил выделить планеты из всего многообразия небесных светил. Таким образом, первым шагом было выделение объектов изучения. Вторым шагом явилось определение закономерностей их движений. (Вообще определения объектов и их взаимосвязей являются исходными положениями - "аксиомами" - гипотетической модели.) Модели Солнечной системы в процессе своего развития прошли через ряд последовательных усовершенствований. Первой была модель Птолемея (См. Птолемей) (2 век н. э.), исходившая из положения, что планеты и Солнце совершают движения вокруг Земли (геоцентрическая модель), и описывавшая эти движения с помощью правил (формул), многократно усложнявшихся по накоплении наблюдений.

Развитие мореплавания поставило перед астрономией новые требования к точности наблюдений. Н. Коперником в 1543 была предложена принципиально новая основа законов движения планет, полагавшая, что планеты вращаются вокруг Солнца по окружностям (гелиоцентрическая система). Это была качественно новая (но не математическая) модель Солнечной системы. Однако не существовало параметров системы (радиусов окружностей и угловых скоростей движения), приводящих количеств, выводы теории в должное соответствие с наблюдениями, так что Коперник был вынужден вводить поправки в движения планет по окружностям (эпициклы).

Следующим шагом в развитии модели Солнечной системы были исследования И. Кеплера (начало 17 века), который сформулировал законы движения планет. Положения Коперника и Кеплера давали кинематическое описание движения каждой планеты обособленно, не затрагивая ещё причин, обусловливающих эти движения.

Принципиально новым шагом были работы И. Ньютона, предложившего во 2-й половине 17 века динамическую модель Солнечной системы, основанную на законе всемирного тяготения. Динамическая модель согласуется с кинематической моделью, предложенной Кеплером, так как из динамической системы двух тел "Солнце - планета" следуют законы Кеплера.

К 40-м годам 19 века выводы динамической модели, объектами которой были видимые планеты, вошли в противоречие с накопленными к тому времени наблюдениями. Именно, наблюдаемое движение Урана уклонялось от теоретически вычисляемого движения. У. Леверье в 1846 расширил систему наблюдаемых планет новой гипотетической планетой, названной им Нептуном, и, пользуясь новой моделью Солнечной системы, определил массу и закон движения новой планеты так, что в новой системе противоречие в движении Урана было снято. Планета Нептун была открыта в месте, указанном Леверье. Аналогичным методом, используя расхождения в теоретической и наблюдаемой траектории Нептуна, в 1930 была открыта планета Плутон.

Метод математического моделирования, сводящий исследование явлений внешнего мира к математическим задачам, занимает ведущее место среди других методов исследования, особенно в связи с появлением ЭВМ. Он позволяет проектировать новые технические средства, работающие в оптимальных режимах, для решения сложных задач науки и техники; проектировать новые явления. М. м. проявили себя как важное средство управления. Они применяются в самых различных областях знания, стали необходимым аппаратом в области экономического планирования и являются важным элементом автоматизированных систем управления.

А. Н. Тихонов.

Математическая модель         
Математи́ческая моде́ль — математическое представление реальности«A mathematical representation of reality»(Encyclopaedia Britanica), один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе. Математическая модель, в частности, предназначена для прогнозирования поведения реального объекта, но всегда представляет собой ту или иную степень его идеализации.
МОДЕЛЬ         
  • Трёхмерная компьютерная модель
УПРОЩЁННОЕ ФИЗИЧЕСКОЕ ИЛИ КОНЦЕПТУАЛЬНОЕ ПРЕДСТАВЛЕНИЕ ОБЪЕКТА (ЯВЛЕНИЯ, ПРОЦЕССА)
Научная модель; Эвристическая модель; Структурная модель; Функциональная модель; Модель принципа действия; Функционально-физическая схема; Модель (физика)
1. схема какого-нибудь физического объекта или явления (спец.).
М. атома. М. искусственного языка.
2. тип, марка контракции.
Новая м. автомобиля.
3. уменьшенное (или в натуральную величину) воспроизведение или макет чего-нибудь.
М. корабля. Леьающая м. самолета.
4. образец какого-нибудь изделия, а также образец для изготовлени чего-нибудь.
Новая м. платья. М. для литья.

Wikipedia

Математическая модель
Математи́ческая моде́ль — математическое представление реальности«A mathematical representation of reality»(Encyclopaedia Britanica), один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе. Математическая модель, в частности, предназначена для прогнозирования поведения реального объекта, но всегда представляет собой ту или иную степень его идеализации.
Examples of use of Математическая модель
1. Так вот, тренажер - это математическая модель станции.
2. Математическая модель показала, насколько они оказались успешными.
3. Математическая модель движения в мегаполисе - вещь, непосвященному трудно понятная.
4. Математическая модель оказывается права в 66-75% случаев.
5. Математическая модель, заказанная ФАС, в арбитражном разбирательстве вряд ли поможет.
What is Математ<font color="red">и</font>ческая мод<font color="red">е</font>ль - meaning and defini